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An approximate theory of film flow produced by an oblique jet incident on a 
surface is proposed that enables one to describe both velocity profiles and 
the properties of the hydraulic jump. The distribution over the surface of 
the coefficient of mass or heat transfer is estimated in the approximation 
of a thin, diffusional boundary layer. 

The interaction of solid surfaces with liquid jets flowing onto them is used in the 
creation of heat exchangers, the chemical treatment of the surface layers of metals and 
other materials, and primarily in organizing the efficient cooling or heating of bodies 
[i, 2]. Here the heat and mass transfer are determined to a considerable extent by the 
velocity fields of film flow generated by the jets. Despite the large amount of research 
into the hydrodynamics of such flows and the transfer processes in them (see, e.g., [1-8] 
and the bibliographies in those papers), sufficiently complete and yet accessible results 
have not been obtained, even for the simplest situations. This is related to the well- 
known difficulties in the analysis of flows at fairly high Reynolds numbers, as well as 
the fact that there is still no adequate model of a hydraulic jump. 

In this paper we use approximate methods to construct a theory of the jump and obtain 
the corresponding representations of velocity distributions in a simple analytical form. 
Only plane laminar flows on a horizontal plate are considered, but all of the results may 
also be generalized to more complicated situations. For simplicity, we ignore possible 
evaporation from the free surface of the liquid layer and the dependence of the physical 
parameters on temperature or the concentration of a reagent. 

The pattern of film flow over an extended plate is presented schematically in Fig. i. 
Four main regions can be identified on the basis of numerous discussions in the literature 
(see [4, 7], in particular). Region I corresponds to the vicinity of the stagnation point 
x = 0 and to the very start of growth of the laminar boundary layer on the plate; the veloc- 
ity of the ideal stream at the outer limit of the layer increases rapidly from zero at the 
stagnation point to the velocity u 0 of the onflowing jet at x = x 0 = a. In region II the 
flow is almost plane-parallel, and the boundary layer increases downstream until its limit 
reaches the free surface at x = xl; the velocity of the ideal stream displaced by it as the 
free surface coincides with u0 in accordance with the Bernoulli theorem. In region III the 
flow has a viscous nature over the entire depth of the thin liquid layer; it ends in a cer- 
tain interval x_ < x < x+ in which a hydraulic jump is formed. Finally, in region IV beyond 
the jump, where the depth of the liquid layer may exceed that ahead of the jump by an order 
of magnitude or more, one observes the quiet spreading flow of the layer under gravity until 
it drains from the outer edge of the plate at x = L. 

In actual situations, some of these regions may not be observed. For example, the jump 
does not develop at all on short plates (region IV is absent) or it may appear before the 
boundary layer reaches the free surface (region III is absent). 
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Fig. i. Sketch of surface flow (a) and the de- 
pendence of z = (ZaZu) ~/2 on O (b); z~ = i - 
cos0; z u = sin-20. 

Near the stagnation point, the field of flow is determined by the solution of the cor- 
responding problem of the mechanics of an ideal fluid [9]. In the central part of region 
II, in which the influence of the input conditions has already degenerated while the thick- 
ness of the boundary layer is still considerably less than the film thickness, self-similar 
boundary-layer flow develops that may be described by the solution of the Blasius problem 
[i0]. Self-similar velocity profiles are also established over the entire thickness of the 
film in regions III and IV far from their boundaries [3-5]. 

The self-similarity is lost, however, in the intervals of transition from one flow re- 
gion to another, and these are associated with the main difficulties in the analysis. To 
obtain relatively simple results, which can be used successfully to solve problems of con- 
vective transfer, we propose below to obtain approximate piecewise-smooth solutions by join- 
ing together the simplest self-similar solutions at the boundaries of the regions (such an 
approach has been implemented in [4]). Because of some loss of accuracy in applying such a 
procedure, it makes no sense to try to formulate rigorous, asymptotic, self-similar solu- 
tions. It is quite sufficient, evidently, to confine ourselves to results obtained using 
simple approximate methods of the Karman-Pohlhausen or Shvets type. 

Asymptotic Solutions. Near the stagnation point in region I, the flow velocity of an 
ideal fluid near a plate can be represented in the series form [9] 

vid(.r,, O) -~ U#+U3x~+U'ox'~+... (1)  

For the tangential component of the velocity of viscous flow near the plate, we then obtain, 
using the Blasius series [i0], 

v.,, (x, 9) ~" Y (UIIv) Z /2 [1.2326Ulx + 4.0,724'tU3D 4- (2)  

+ 6 (0.6348 + 0,1192U~/U~Us) U~x 5 -}- . . . ] ,  y (U~/v) (< 1, 

The flow rate of liquid per unit width of the plate in the positive direction of the x 
axis (see Fig. i) is Q = u0 a, where a=a (6). For a jet flowing perpendicularly onto a 
plate, a=a (~/2) = a0, with 

Uo, U s = O ,  U5 1 ( - - ~ - - )  ~ U I =  ~ - - - -  I2 0 .  

8ao 5 \ ~ao ! (3)  

The dependence of z,=a (O)/ao and z u = U1(O)/(~/8ao)u o on the angle of attack O for film 
flows generated by oblique plane jets can be calculated on the basis of the theory in [9]; 
they are illustrated in Fig. i. If we confine ourselves to allowance for only the first 
term in the Blasius series for simplicity, then from (2) and (3) we have for 0 < x ~ x0 

Vx(X, y) ~O,303Z(uoa/v)11h~oxyla 2, z =  (z~z,~) 3;2. (4)  
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The Prandtl equations for the laminar boundary layer in region II (x 0 <_ x <_ Xl) may 
be written in the form 

Or,. Ov~ _ 1 Op OZvx Or,. Ovy 
v~---ff~x + a---y- 0 ax + ~ - -  2 ---=- ay - o ,  (5) 

in which allowance is made for hydrostatic pressure due to gravity, and 

P = P o + g g  [h (x)--y] ,  p0=const. (6) 

The boundary c o n d i t i o n s  to  (5) a r e  r e p r e s e n t e d  in the  form 

vx=v~=O, y=O; v~=Uo, Ovx/Oy=O, y---6(x), (7) 

in which the  r e l a t i o n s h i p  between 6 and h fo l lows  from the  c o n d i t i o n  of  c o n s e r v a t i o n  of  the  
t o t a l  l i q u i d  f low r a t e  along the  f i lm:  

6 

Q --~ uoa-= Zauoao ---- f vxdy + (h--6) Uo = const. ( 8 ) 
0 

Integrating the first equation of (5) with allowance for the second, and taking Vy = 0 
at y = h over the thickness of the film, we have 

dx ! v-xdy -- dy -- ~ ( 9 ) 

In accordance with the Karman-Pohlhausen method, we take 

v,~(x, y ) =  6 3 uo, 0 < y < 6 ( x ) ,  

Uo, 6 (x) < y < h (x), 
(io) 

which satisfies all the conditions on v x in (7). From (8) we then get 

H=1+3A/8, (11) 

and from (9), with allowance for (6), we get 

1 35 Fr 1 + A - (12) 
13 d~ 13 Re A 

Here we introduce the dimensionless variables and parameters 

{~, H, A} = al {x, h, 6}, Re = u____~_a~ , Fr = gau~ (13) 

The solution of (12) under the condition A = 0 at ~ = 0 may be expressed as 

~ -  13 (1 35 Fr) AZ I 
Re 280 --- 13 -" 32" Fr A 3, 

with the boundary layer emerging at the free surface (region II ends) at 

(14) 

A---- H, = 8/5; (15)  

the corresponding value of the dimensionless coordinate 6z may be determined from (14). Con- 
fining ourselves to situations with Fr << i, with good accuracy we have 

~ ~ (13/280) (8/5)2Re~ 0. 119 Re. (16) 

Boundary-layer flow of the type under consideration is possible, in accordance with 
(12), only for A < A* = (104/105)Fr -I = Fr -l, when the smooth solution (14) has meaning. 
For small Fr it is obvious that A* >> HI, i.e., detachment of the boundary layer at x < x I 
does not occur in practice. The approximate solution obtained turns out to be fairly close 
to the exact solutions found in [3-5], as well as to the solutions that follow from other 
approximate methods. For example, if, as in [7], we use the Shvets method with a linear 
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velocity distribution within the boundary layer in the zeroth approximation, instead of (14) 
and (16) we obtain the equations 

Re 16 12 4 

The established self-similar flow in region III of "hydrodynamic stabilization" (we 
use the terminology from [7]) is analyzed in complete analogy with the foregoing, with the 
conditions at y = 6 in (7) being replaced by the single condition 8Vx/~y = 0 at y = h and 
with the introduction into the Karman-Pohlhausen approximation (i0) of a certain surface 
velocity u(x) instead of u a. From the condition of constancy of the flow rate (8) we then 
get 

u (x) = 8Q/Sh (x),  

and the equation for H(~), with allowance for (17), takes the form 

1 - -  ~ Fr  H 3 - 
d~ 272 Re 

The s o l u t i o n  of (18) under the  c o n d i t i o n  H(gl)  = H1 at  ~ = ~z i s  

- - ~  ._ 27__2 ( H - - H 0 - -  5 Fr(H ~-H~),  
Re 525 48 

but it loses meaning as H + H,, when dH/d~ + +~, where 

H , = ( .  \ 35 j 1 7  '~ ' /a (__8)2/ 'Fr_ , /a~l .075Fr_ , /a  ' 

(17) 

(18) 

(19) 

(20) 

which corresponds to detachment of the film flow from the solid surface at a certain dis- 
tance from the onflowing jet. 

The possibility of such detachment indicates the inevitability of the appearance of a 
hydraulic jump in the spreading flow of a film over a fairly extended plate. Physically, 
this detachment is due to the appearance of return flow under the action of the pressure 
gradient near the plate caused by gravity, which retards the flow. This should result in a 
change in the sign of the surface friction (which is confirmed by the experiments in [7]) 
and by the appearance of a vortex, throwing the liquid away from the plate and thereby re- 
sulting in a considerable increase in the thickness of the liquid layer. Such a picture is 
in agreement with the concepts of Taney and Kuihary, discussed critically by Watson [4]. 
It turns out that, despite the obvious smallness of gravitational effects in horizontal film 
flow, they are of fundamental importance. 

The spreading flow of liquid under the action of gravity in region IV beyond the jump 
obviously may be described in the same scheme as the viscous film flow in region III. In 
this case, for the self-similar section under the condition H($ L) = H2, SL = L/a, instead 
of (19) we obtain 

~L--~ __ 5 ~ 272 ( H - - H 2 ) .  (21) Re -~ - F r ( H ~ - H ~  52----5 

If the draining from the edge of the plate is not accompanied by additional hydraulic 
resistance ("smooth draining" in the terminology of [7]), then the natural boundary condi- 
tion at the exit corresponds to the requirement dH/d$ + -~ as ~ + EL, i.e., we must take 
H 2 = H,, where H, is defined in (20). In the presence of exit resistance, H 2 > H,. 

If the Shvets method is used, then none of the results change qualitatively, but instead 
of Eq. (20), we obtain H, = (9/bFr) I/3 = 1.216Fr "I/3 for the critical value of the dimension- 
less film thickness. It must be emphasized that in the context under consideration, the 
Karman-Pohlhausen method turns out to be preferable to the Shvets method. 

Joining of Asymptotic Solutions. If we use the approximate Eq. (4) to describe surface 
flow in the entire region I, and we use Eq. (i0) with 6(x) from (14) for the entire region 
II, then the continuity condition at the boundary $ = t0 between the regions has the form 
(Fr << i) 
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0,303 ~uol/Re~oq ,~, 1,5 (I3/280) l/2Uoti;~c/gorl, r} == t//'a, 

from which we have 

~o~(13/280)w3(O,202)-2/3ze/3~.,l.043z ~i~. 
(22)  

As a result of such joining, of course, a break appears at ~ = ~0 in the dependence of the 
velocity on the longitudinal coordinate. It is easy to eliminate, in principle, by replac- 
ing (4) by a series of the Blasius type with variable coefficients. 

A joining of the self-similar solutions in regions II and III that guarantees continu- 
ity of the velocity (but not of its longitudinal derivative) is provided by equating the 
quantities H I figuring in (15) and (19), which gives H I = 8/5 in (19). 

Finally, let us consider the problem of joining the asymptotic solutions before and af- 
ter the hydraulic jump. We assume that the region of formation of the jump (x_ ~ x ~ x+ in 
Fig. i) is narrow enough that we can neglect surface friction in formulating the equation 
of conservation of momentum in integral form, i.e., in this case we proceed just as in the 
standard analysis of the consequences of the sudden expansion of a channel or the flow of a 
stream through a performated plate or an array formed by solid bodies of various shapes [Ii]. 
We may then write, as in [4, 7], 

I h_ 

o o 

where the "minus" and "plus" subscripts pertain to the stream before and after the jump, re- 
spectively. 

The conditions under which a hydraulic jump is formed at all are of primary interest. 
If the stream detaches from the plate even before the boundary layer reaches the free surface 
of the film, then there is really no physical reason for a jump to develop. Using (14), 
we see that this occurs for 

L/a-- (0,119--0,448 Fr) Re<O. (24)  

If this inequality is violated, however, a completely different situation develops. If 
quiet viscous flow is actually established in the outer region, then the requirement dh/dx + 
-~ as x § L must be satisfied right near the edge of the plate under the conditions of smooth 
draining. This is possible only in the regime of gravitational spreading flow of a liquid 
layer, when Eq. (21) is valid, but, as follows from (18) or (19), it cannot occur, in princi- 
ple, within the region of hydrodynamic stabilization of a thin liquid film. If the latter 
region appears at all, it must inevitably result in the formation of a region of gravitation- 
al spreading flow, and hence in the formation of a hydraulic jump. The inequality opposite 
to (24) may therefore be treated only as a necessary but not a sufficient condition for the 
appearance of a jump. In fact, the simple expressions for the velocity fields given above 
are approximately valid only for flows in which the self-similar regimes under consideration 
actually occur in the individual regions, which requires that these regions be fairly exten- 
sive. If the inequality (24) is slightly violated, this is definitely not so, and the ex- 
pression for the coordinate at which the boundary layer reaches the free surface, which fol- 
lows from (14) and was used in (24), is incorrect. This corresponds physically to the strong 
influence of the conditions at the exit, i.e., at x = L, on the flow structure in the region 
in which 6 = h. We may therefore only state that a hydraulic jump develops, and our approxi- 
mate theory is suitable for describing it only if the quantity on the left side of (24) is 
not only positive but fairly large. 

Let us first assume that viscous film flow occurs immediately ahead of the jump, i.e., 
there is a region III. Approximations of the type (I0) with 6 = h and u = 8Q/5h are then 
valid on both sides of the jump [see (17)]. One of the equations for determining the dimen- 
sionless thicknesses H_ and H+ of the liquid layer before and after the jump may be obtained 
directly from (23), and the second can be obtained by adding (19) with 6 = g_ to (21) with 
$ = 6+, assuming that 6+ - $_ is small compared with $L - $z- As a result, using the defini- 
tion of 6z from (14), we obtain 
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H~--lT>.~ 35 \ 5 I Fr ~hT_ 
,), 

H+ 

5 4 ~ H i  ............... Fr (H+ - -  H ,  - -  + HI) - -  
48 

272 ,, (H+ -- /4,  --/4_ q- Ha) .,~ 
525 

L!a - -  (0,119 -70,448 Fr) R e 
Re 

(25) 

where H l and H, are defined in (15) and (20), respectively. It is convenient to introduce 
new dimensionless thicknesses using ~ = H/H,. From (25) we then get 

e~ 2 
(%_ O~+ (26) 

where we have introduced the quantities 

% ,-~ 1,488 Fr ~/a, ~ ~ 7,182 Fr' /~  Lta - -  (0,119 - -  0 .448 Fr) Re 
Re 

(27) 

The roots ~+ > i and =. < I of the system (26) obviously have physical meaning. 

From the first equation (26) we get 

~+ 1 +  ~ 1  , (28) 

while the second equation, with allowance for (28), completely determines H+ as a function 
of ~i and ~ from (27). In Fig. 2 we give the dependence of ~ and ~_ on ~+ for different Fr 
(or ~i), making it possible to find the solution of the system (26) graphically. It can be 
seen directly from (26) that a physically applicable solution (~+ > i) exists only for 

but not for all ~ > O, as would follow from the reversed inequality (24). This is related 
to the approximate nature of the self-similar velocity profiles used, as well as to neglect- 
ing the width of the jump in comparison with the length of the plate and neglecting surface 
friction within it, i.e., with the approximate nature of Eqs. (25) and (26). The accuracy 
of the theory obviously should increase with increasing ~. 

From (26) and (28) with B >> i we get the asymptotic behavior 

~ + ~ p , / 4 ,  ~ _ ~ 2 ~ 2  =2~-~ ( 3 0 )  

It is'easy to find the dimensionless coordinate ~_ = ~+ of the jump as the sum of $_ - 
$i, which follows from (19) with H = H = s_H,, and ~l- A hydraulic jump actually develops 
before the boundary layer reaches the free surface if ~_ - $I > 0, i.e., H_ > H I (a_ > ~l). 
Using the definition of ~I in (27), this condition can be given the form 

Fr~-~'0,304e~ (~, Fr), (31) 

where ~_(~, Fr) is a function determined from the curves in Fig. 2. For ~ = ~m and ~ >> i, 
when ~_ is approximately equal to unity or may be expressed by the equation in (30), from 
(31) we have 

log 

3 

2 

1 

/ 3 
i i 

5 

6 

4; 

Fig. 2. Dependence of ~ and ~_ 
on ~+ in accordance with (26) 
for Fr = 0 and 0.i (solid and 
dashed curves, respectively). 
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a 

log (Z . . . . . . . . . . . . . . . . . .  

/ / / ,  �9 / / / /  / , .  

22 

b 
_log ~ ~-~ ....... ....... "'~ .... N_ 

7 " t t 2  / I / / / / / / /  / / / / / / / / / / z  7 

23 24 ~ + 3,2 7,4 7,6 ~,. 

Fig. 3. Dependence of ~ and H_ on H+ in accor- 
dance with (33) with Fr = 0.03 (a) and 0.i (b); 
the boundaries H_ = i and H_ = 1.6 of the domain 
of existence of a regime with a hydraulic jump 
in the range of boundary-layer flow are shown. 

Fr~0.304, It ~ [3.. 
Fr~0.252 Re [L/a--  (0,t 19--0.448 Fr) Re] -~ (32) 

If the condition (31) is not satisfied, then a jump can develop only before the bound- 
ary layer reaches the film surface. In this case, after manipulations completely analogous 
to the foregoing, instead of (25) we obtain the system 

- -  ~ Fr 35 35  35  - ~ +  ' 

5 F r ( H $ _ H ~  ) 272 ( H + - - H , ) +  104 ( 35 ) 16 L/a  
4---8 -- 52"----5-0 ~ 1 -- Fr (H_ -- 1) ~ -- -- Fr (H_ -- I) 3 -- 13 27 l~e 

(33) 

--y;  

the corresponding equations can be written for ~+ and ~_. This system can be solved easily 
by the earlier method: express H as a function of H+ and Fr from the first equation and 
then use the second equation to determine H+ as a function of L/aRe and Fr. A graphic solu- 
tion of the system (33) is given in Fig. 3. Here we also show the boundaries H_ = 1.6 and 
H_ = 1 of the domain of existence of flow of the type under consideration. If H_ > 1.6, 
then a jump develops, as indicated above, in the region of hydrodynamic stabilization. For 
H = I, it is easy to see that the jump merges with oncoming jet, i.e., gravitational spread- 
ing flow of the liquid layer occurs over the entire plate. 

The pattern of variation of the flow structure can be represented briefly as follows. 
Let Re and Fr be fixed, taking Fr ~ 0.244 for determinacy, so that the second term in (24) 
is negative. For L/a that are not too large, boundary-layer flow then occurs over the en- 
tire plate, and the boundary layer extends over almost the entire film cross section in the 
range of L/a corresponding to a change in the sign of the inequality (24). With an increase 
in the length of the plate, when $ from (27) is comparable with ~m from (29), a weak hydrau- 
lic shock develops, migrating toward the incident jet and increasing in amplitude with a 
further increase in L/a. This process continues until L/a becomes large enough for the sign 
of the inequality (31) to change. Finally, at some critical value of L/a corresponding to 
H_ = 1 (this value can be found from the curves in Fig. 3), the jump disappears again be- 
cause it merges with the jet. 

This picture is in qualitative agreement with observations. Moreover, one can satis- 
factorily explain both the experimental behavior of the amplitude of the jump and its posi- 
tion on the plate as functions of the physical and operating parameters. The influence of 
the angle of incidence of the jet on the plate and the differences in the behavior of direct 
and return film flows, for example, are very easy to describe by allowing for the dependence 
of a on 0 for a fixed a 0 (see Fig. i). Furthermore, the presence of an additional hydraulic 
resistance at the outer edge of the plate (due to the sharp rim or special obstructions) 
should, to first order, result in an increase in the thickness of the layer beyond the jump 
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by an amount Ah such that pgAh approximately compensates for this resistance. In accordance 
with the developed theory, this causes, first, some decrease in the thickness of the liquid 
film ahead of the jump [see Eq. (28), for example], and second, a shift of the jump toward 
the jet. Both these effects have been observed in the incidence of axisymmetric jets in 
[7]. We also note that for given a 0 and u0, the self-similar velocity profiles do not de- 
pend on the means of supplying liquid to the plate. Therefore, the height of placement of 
the nozzle from which the jet flows, for example, can only affect the situation in region I. 

Previously, in an analysis of the parameters of a hydraulic jump only Eq. (23) has usu- 
ally been used, which made it possible to obtain a certain relationship between these param- 
eters but not to determine any one of them definitely [4]. (An exception is [7], in which 
an equality between the average flow velocity and the velocity of propagation of perturba- 
tions over the surface of shallow water was used as an additional closing equation.) More- 
over, the physical causes of the appearance of a jump itself remained completely unclear. 
In the present paper the inevitability of the formation of a jump is associated with the 
radical structural reorganization of the flow over the surface, required to satisfy the 
specific conditions at the exit from it. 

Heat and Mass Transfer. The results obtained enable us to describe approximately the 
velocity field of film flow over the entire length of the plate and thereby make it possible 
to formulate various problems of convective heat and mass transfer in closed form. These 
problems are very complicated in general and require an independent analysis (there are ex- 
amples of analytical and numerical investigation of transfer in flow of the type under con- 
sideration in [6-8]). Here, for simplicity, we consider only diffusional transfer to a plate 
at large Schmidt (Prandtl) numbers, when the approximation of a thin diffusional boundary 
layer is valid. 

On the basis of the above results, we may represent the velocity directly at the sur- 
face of the plate as 

v~ ~ F (~) Uoy/a, 

0.303 ] / ~  ~, 0<~<~o, (34) 

P($)= 0,323]/~ -'j2, ~o<~<~i, 

2.4H-2 (~), ~z<~<~L, 

in which Fr << 1 has been used in writing F($) in the region $ < $i; H($) is assumed to be 
discontinuous at the jump $, = $_ = $+. 

After the introduction of Mises variables, the solution of the standard problem of con- 
vective diffusion 

Oc Oc O~c 
v= Ox ~ vu 0!t D Off  , c O, y O; c Co, y ' - * e o  ( 3 5 )  

can be represented in the form [12] 

f ( co " exp - -  9 
c ~  1,17 o 

t = g 4a2D o 

( 3 6 )  

from which we get an expression for the local Sherwood number, defined as the ratio of the 
local mass flux toward the plate to c0D/a: 

Sh = 0,538 (ScR ) = - - f .  
0 

(37) 

Using (34), as well as Eqs. (15) and (16) for HI and $i, and neglecting the term containing 
Fr in (19) in calculating H($), from (37) we have 
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~ Sc 1/3 Re 1/2 
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I 

Fig. 4. Distributions of 
Sh and Sh ~ (solid and dashed 
curves) in the vicinity of 
the stagnation point in nor- 
mal onflow of the jet (~0 = 
1 . 0 4 3 ) .  

Sh ~ 0.41,l SC 1/3 Reli2, 0 < ~ < ~o, 

Sh ~ 0,306 Sc I/3 Re I , 2  a .... ' [0.367~o- @ 0,708 (~3/4 _-- ~/4)1--1/3 ~ - I / 4  , 

~o < ~ < ~ l  ~ 0.119Re, 

0.432Sc I 3 Re43 j , ~3 ~ t-{e3. 4 ~at4;, D e l / 4  _.~. 0,803 Re In ~ "t- 0.710 Re 1 --I,'J 
�9 ' ~o s l ' ,  0,829 Re J 

Sh ~ t10-367~o -t- 0,758 (0.203 --  
+ 0.710 Re 

(38) 

The error of the latter equation increases with increasing $ - $i, since for fairly large 
H ~ H,, the second term on the right side of (19) cannot be neglected, even in the case 
Fr << i. 

Vortex flow within the hydraulic jump leads to mixing of the liquid and equalization 
of the concentration of an admixture over the thickness of the film. If this mixing is per- 
fect, then the constant concentration c o ' < c o immediately beyond the jump can be found from 
the condition of balance of the mass of the admixture with allowance for its absorption at 
the plate ahead of the jump. In this case, a new diffusional boundary layer is formed be- 
yond the jump, and a solution of the type (36) of the problem (35) for the distribution of 
concentration and an equation of the type (37) for the local Sherwood number are valid, as 
before. Here the function F(~) is expressed by the last equation in (34), and for H(~) we 
have an equation obtained by solving (18) under the condition H(~,) = H+ by analogy with 
(2i):  

~ - - ~ .  _ _ _ 5  Fr (H~--H 9 -  27___22 (H+- -H) ,  ~ > ~ . .  (39)  
Re 48 525 

If H+ >> H,, 
parison with the first. 

in particular, we can neglect the second term on the right side of (39) in com- 
We then obtain the equation (6 > $,) 

Sh~1~39 co ( S o ) 1 , , 3  {l__[l__k(~__~.)lai4}__,ia 
Co k Fr H~_[1--h(~--~. ) ]  1i4 ' 

48 

5H~_Re Fr 

(40) 

which supplements the equations in (38). It is easy to see that the restoration of the 
surface in the vicinity of the hydraulic jump may well result in the appearance of a local 
maximum in the function Sh(~) at ~ = ~,. Such maxima have been observed experimentally in 
[ 7 ] .  

Let us briefly discuss the main features in the distribution of the local Sherwood 
number over the plate. The classical relation Sh ~ Scl/3Re I/2 holds in regions I and II, 
but the presence of a singular region near the stagnation point is very important here. If 
we neglect this region, we obtain the well-known result [6] 

Sh:Sh~ t/2 (41) 
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[which follows formally from the second equation in (38) for go = 0], in accordance with 
which the coefficient of mass transfer would become infinite as the stagnation point is ap- 
proached. In reality, this coefficient is finite and does not depend on ~ in a region that 
is the wider, the smaller z [see the definition of g0 in (22) and Fig. i]. The dependence 
of Sh and Sh ~ on g in the vicinity of the stagnation point are shown in Fig. 4. Their gen- 
eral character is fully confirmed by experiments [8]. 

In regions III and IV of viscous flow before and after the jump, the dependence of Sh 
on Re turns out to be considerably more complicated; beyond the jump the dependence of Sh 
on Fr and L/o also becomes very important [one must also allow for the dependence of H+, 
which figures in (40), on these parameters, of course]. The corresponding distributions 
Sh($) are not given for lack of space; they are easily constructed on the basis of (38) and 
(40) and the method of determining H+ suggested above. 

In conclusion, we note that all of our results may be generalized, without particular 
difficulty, to axisymmetric laminar flow generated by a cylindrical jet flowing normally 
onto a horizontal plate, to plane laminar flow over an inclined plate, and to the corre- 
sponding turbulent flows. In the latter case it is desirable to introduce a velocity-de- 
pendent vortical viscosity, as suggested by Glauert [3] and then used by Watson [4]. An 
analysis of the hydrodynamics of these flows, and of transfer processes at moderate Schmidt 
(Prandtl) numbers in the corresponding velocity fields, can be natural subjects for future 
research in this field. 

NOTATION 

Q, effective initial thickness of the liquid layer, equal to Q/u0; o0, half-thickness 
of the incident jet; c, concentration of the admixture; c o and co', values of c at a dis- 
tance from the surface; D, diffusion coefficient; F, function defined in (34); g, free-fall 
acceleration; h and H, dimensional and dimensionless thicknesses of the liquid layer; L, 
length of the plate; p, pressure; Q, liquid flow rate in film flow; Uj, coefficients in (i); 
u0, velocity of the onflowing jet; v x and Vy, velocity components; x and y, longitudinal 
and transverse coordinates; z, parameters determined in Fig. i; ~, dimensionless thickness; 
~z and 6, parameters introduced in (27); ~, right side of the second equation in (33); 6 and 
A, dimensional and dimensionless thicknesses of the boundary layer; v, kinematic viscosity; 
g, dimensionless longitudinal coordinate; p, density; 8, angle of attack; Re, Fr, Sc, and 
Sh, Reynolds, Froude, Schmidt, and Sherwood numbers. 
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